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The Exact Velocity Autocorrelation 
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The velocity autocorrelation function of a particle in a model system with 
realistic diffusion is calculated exactly and compared with the corresponding 
result in the one-dimensional case. The method employed yields the result 
of Lebowitz and Sykes in one dimension in a very simple manner. 

KEY W O R D S :  Velocity autocorrelation function; Poisson process; internal 
degree of freedom. 

In general the exact calculation of the velocity autocorrelation function, 
which is of interest in an analysis of nonequilibrium problems, is prohibitively 
difficult. The only known such calculations deal with one-dimensional 
systems studied, for example, in the papers by Jepsen a) and Lebowitz and 
Percus. (2) Although these one-dimensional models admit exact calculation, 
they lack a certain measure of realism in contrast with actual physical 
situations in three dimensions. For example, although one finds an exact 
diffusive behavior, the physical interpretation of this diffusion is quite unlike 
that occurring in systems of physical interest. This is because in a one- 
dimensional world no particle can go around its neighbors; and yet this is 
precisely the characteristic of the one-dimensional world which makes the 
exact solution possible. 

We calculate below the exact velocity autocorrelation function of a 
simplest possible model in which the interpretation of diffusion has a more 
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physical character, in that the one distinguished particle is able to go around 
others. The model we consider is an infinite system of very thin, hard rods 
(needles) of length d moving in a two-dimensional strip infinite in one of the 
directions, the x direction. Initially the x coordinates are randomly distri- 
buted. The y coordinates of all the rods except the one distinguished rod 
are equal. This exceptional rod is further distinguished by having a nonzero 
y component of the velocity, while all the other rods have their v~ = 0. The 
distribution of the x component of the velocities is chosen to be the same as 
in Ref. 3 (studied also in Ref. 2), namely that each rod is equally likely to 
have v~ = + c  or v~ ---- - -c  independently of all the other rods. Initially all 
rods are chosen to be parallel and pointing in the y direction. The effect of 
the interactions is merely the exchange of their x velocities whenever two 
rods come into contact. Thus the distinguished rod keeps its y velocity, which 
is a constant of the motion assuming periodic boundary conditions in the y 
direction. It is assumed that all the rods are constrained against rotations 
(infinite moment of inertia). 

Without the one distinguished rod this problem would be a purely 
one-dimensional problem identical with that studied in Ref. 3, where a 
rather lengthy calculation leads to the following expression for the velocity 
autocorrelation function: 

~b(t)  - ~  < V ( t ) V ( 0 ) >  = c2e -2~ (1) 

where p is the constant density of particles. This same correlation function 
follows much more directly from the observation that the process ~ ( t ) ,  
the number of collisions a chosen particle has undergone up to time t, is a 
Poisson process with density pc. This statement follows from the fact (see 
Ref. 4, p. 405) that the initial distribution of the particles along the line is 
a Poisson process, i.e., 

e(~ = k] = [(O)~)k/k !1 e-o~ 

where N(A) is the number of particles in an interval of length A, and a result 
due to Spitzer (~) which states that such a process along the line is invariant 
in time when the interactions among the particles are as we have described 
above. Such a simple correspondence between the two processes JV'(t) and 
N(A) is of course only due to the especially simple choice of the velocity 
distribution, which has the property of assigning equal speeds to all the 
particles. Exploiting this simplicity, one directly obtains the expression (1) 
for ~b(t) as follows: Let the particle start with velocity + c  at time t = 0; then 

r ~ <v+(t) v+(0)> = c2[P(+, t, + ,  0) --  P( - - ,  t, + ,  0)] 

where P(zk ,  t, + ,  0) is the probability of the particle having velocity zkc 
at time t and + c  at time t -= 0, and v+(t) is the random variable corre- 
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sponding to the velocity o f  the particle at time t given that  the particle started 
with velocity -bc at time zero, i.e., v+(O) = -bc with probabil i ty one: 

~b+(t) = c2[P(Jf f( t )  = even) - -  (P(JV'(t)  = odd)] 

= c2e-~  pct  - -  sinh pct] = c2e -~~ 

I f  the particle starts with either §  or - - c  at t ----- 0, then ~b(t) is the correlat ion 
function of  the r andom variable v(t) = av+(t), where a is the r andom variable 
with P(a  = -b 1) - -  �89 and P(a  = --  1) = �89 so that  

sb(t) = (v ( t )  v(O)) = (a2v+(t) v+(O)) = (a2) (v+( t )  v+(O)) 

c2e-2oct 

which is the same as the problem of  the r andom telegraph signal in Ref. 6, 
p. 288. 

N o w  these same observations allow us to write down 

r  = (v~(t) v~(0)))  

for  the distinguished rod in the more  general problem in the strip ment ioned 
above. Again  let the initial v~ = -be. For  convenience we can arrange the 
width o f  the strip such that  the time intervals tl and t2 during which time the 
distinguished rod is within the interaction region and outside that  region, 
respectively, are equal, i.e., h = t2 = 7. This gives max imum simplicity 
without  sacrificing the essential features o f  the problem we want  to study. 
In  terms of  the geometric cross section o f  the rods r = 2d/v~ and the strip 
has width 4d. Clearly the two-dimensionali ty of  the problem is illusory since 
this can still be regarded as a one-dimensional problem where one particle 
has an internal degree o f  f reedom whose value at a given time determines 
whether that  particle is or  is not  available for  interaction at that  time. 
Nevertheless, in the following we speak of  this internal degree o f  f reedom 
as the y position. 

Let o~ = yo/v~,  with Y0 the initial y posit ion of  the distinguished rod. This 
is r andomly  distributed between zero and 2r, where ~ = 0 corresponds to 
the initial y posit ion such that  the rod is just  emerging f rom the interaction 
region. Then for all initial positions such that  0 ~< o~ ~< r 

t c for 0 ~ < t ~ < r - - ~  
~h~(t) = c2e -2~ for  ~- - -  ~ ~ t ~. 2~" - -  

[ c~e -'~pc" for  2~- - -  ~ ~< t ~ 3~- - -  

given2that the initial v~ = -bc. 
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In  gene ra l  fo r  (2n -k l ) ' r  - -  a ~ t ~< (2n + 2) ~ - -  ~, n : 0, 1,..., we  
have  

r  = c2{P[Jg ' (n z )  = even]  P [ d ( t  - -  (2n -j- 1) ~- + ~) = even]  

+ P[JV'(n7) = odd ]  P [ J V ( t  - -  (2n -k 1) ~- § c 0 = odd ]  

- -  P[Jff (m-)  = even]  P [ J V ' ( t  - -  (2n § 1) -r -k ~) = o d d ]  

- -  P[Jg ' (m-)  = odd]  P [ ~ ( t  - -  (2n -k 1) z -k a) = even]  

-~  c2{e - n ~  cosh(npc~r)  e-~176 cosh[ t  - -  (2n -k I) ? -k o~] 

+ e -"~ s i n h ( n p c r )  e-~ s inh[ t  - -  (2n + 1) ~- 4- ~] 

- -  e - " ~  c o s h ( n p c r )  e -~ s inh[ t  - -  (2n -t- 1) 7 - k  o~] 

- -  e -~~  s inh(npcz)  e-~162 ~-(2~+~)~+~1 cosh [ t  - -  (2n + 1) r + c~]} 

~ .  c2e-2noC~'e-2Oc[t-(2n+l)~'+a] 

a n d  fo r  the  i n t e rva l  (2n + 2) �9 - -  ~ ~< t ~< (2n + 3) r - -  ~ we have  

~b.(t) = c~e- '~o~'e  -2"~" 

since fo r  any  t in  th is  i n t e rva l  ~b~(t) m u s t  e q u a l  ~b~[(2n -k 2) ~- - -  c~] f r o m  the  

p r e c e d i n g  in te rva l .  
S imi l a r ly  w h e n  the  in i t i a l  y p o s i t i o n  is such t h a t  ~- <~ ~ ~< 2~- i t  c an  

eas i ly  be  seen t h a t  

r  = (c~e-~o,(~-~) 
fo r  O ~ t ~ < 2 T - - a  
fo r  2 ~ r - - a  < ~ t  ~ < 3 r - - ~  

a n d  in  gene ra l  fo r  the  f o l l o w i n g  t ime  in te rva l s  (n = 0, 1, 2,. . .) 

~ ( t )  = c~e- (2~+4)~e  -2~ (2n -k 3) ~- - -  ~ ~< t ~< (2n -k 4) 7 - -  c~ 

a n d  

r  = cZe-(2~+21o~'e - ~ ( 2 " - ~ ) ,  (2n + 4) ~" - -  o~ ~ t ~< (2n -~ 5) ~" - -  o~ 

T o  o b t a i n  the  f inal  c o r r e l a t i o n  f u n c t i o n  we m u s t  ave rage  ~b~(t) over  al l  ~. F o r  
th is  p u r p o s e  we need  the  expres s ions  ~bt(~), i .e. the  va lues  o f  the  c o r r e l a t i o n  
f u n c t i o n s  fo r  f ixed t ime  t as a f u n c t i o n  o f  the  in i t i a l  y p o s i t i o n .  These  a re  seen 

to  be  

r  = 

c 2, 0 ~ < ~ < ~ - - - t  
c2e -~oc(t-~+~) ~" - -  t ~ a ~< r 
c2e -2"et "r ~ ~ ~ 2 7  - -  t 

c'~e-2"~(~-~), 2~  - -  t ~ ~ <~ 2~  
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for  the first time interval 0 ~< t ~ ~-. Similarly for  the second time interval 
7. ~ t ~< 27. we have 

[ c2e -2pc(t-*+~), 0 ~-~ o~ ~. 
~c~e -~~176 27. --  t <~ 

~ c~e -2~ 3 7 . -  t <~ 

And  in general for  the odd time intervals 2m- ~ t 
we can write 

r l C2C--2n~ocr 
I C2e-2n~176 

( C2e-2npc~'e-2~c(2-~-a) ' 

and similarly for the even time intervals (2n + 1) ~- ~< t ~< (2n + 2) 

27"  - -  t 

3~ ' - -  t 

( 2 n +  1) 7., n = 0, 1 ..... 

0 ~<~ ~ < ~ - - - [ t - - 2 n 7 . ]  

7. ~< o~ ~< 2~" - -  [t - -  2n7.] 
2~- - -  [t - -  2m-] ~< o~ ~< 2~- 

r = 

C2e-2noC:e-2oc[t-(2n+l)~-+a] 
C2e-2noCre-gO~r, 
C2e-2nOCTe-2Oc(2~-~) 
C2e--2noc*e-2oc[t-(2n+l)'rJ 

0 ~< ~ ~< 7. - It - (2n + 1) 7.] 
~ - -  [ t -  ( 2 n +  1) 7.] ~< ~ ~ < ~  
7. ~ a  ~ < 2 ~ -  [ t - ( 2 n - t -  1) 7.] 
2 7 . - [ t - ( 2 n +  1) 7.] ~oL~<2r 

Finally, doing the required averaging, we obtain 

2~" 

~(t)  = (1/27.) f ~t(a) da 
0 

For  the first time interval 0 ~< t ~< -r we get 

~b(t) = (c2/27.)(~ - - -  t)(1 + e -20~) + (c/2p7.)(1 - -  e -2pe~) 

for the second time interval ~r ~< t ~ 27. we get 

~(t) = (c2/27.)(t - 7.)(e -2~"- ' )  + e - ~ )  + (c/2pT)(e -2~176 - e -2~ 

and in general for (2n7.) ~< t ~ (2n + 1) T 

c 2 1 e-~c[t-2~q) I ~b(t) = ~ e -~ . . . .  l[(2n + 1) ~- - -  t](1 + e-2"~[ t - ~ )  + -fi~ (1 - -  

and for  (2n + 1) r < t ~ (2n + 2) r 

c2 l ~b(t) = 2rr e-2~~ [t - -  (2n -t- 1) 7.](e-2~ + e -2~ 

1 (e_2.cEt_(2.+ll~ ~ _ e_2pc~)l 
+ p c  
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Fig. 1 

A plot of  this function for 0 ~< t ~< 2r is given in Fig. 1. Calculation of the 
diffusion coefficient yields 

D = ~(c/p) + (c2r/4) coth pc-r 

I f  one restricts the initial y position of the distinguished rod to lie within the 
interaction region, then one obtains for the diffusion coefficient D = c/p, 
independent of  ~- and precisely twice the value for the purely one-dimensional 
case. 
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